Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants

نویسندگان

  • Nasim Mavaddat
  • Paul D. P. Pharoah
  • Kyriaki Michailidou
  • Jonathan Tyrer
  • Mark N. Brook
  • Manjeet K. Bolla
  • Qin Wang
  • Joe Dennis
  • Alison M. Dunning
  • Mitul Shah
  • Robert Luben
  • Judith Brown
  • Stig E. Bojesen
  • Børge G. Nordestgaard
  • Sune F. Nielsen
  • Henrik Flyger
  • Kamila Czene
  • Hatef Darabi
  • Mikael Eriksson
  • Julian Peto
  • Isabel dos-Santos-Silva
  • Frank Dudbridge
  • Nichola Johnson
  • Marjanka K. Schmidt
  • Annegien Broeks
  • Senno Verhoef
  • Emiel J. Rutgers
  • Anthony Swerdlow
  • Alan Ashworth
  • Nick Orr
  • Minouk J. Schoemaker
  • Jonine Figueroa
  • Stephen J. Chanock
  • Louise Brinton
  • Jolanta Lissowska
  • Fergus J. Couch
  • Janet E. Olson
  • Celine Vachon
  • Vernon S. Pankratz
  • Diether Lambrechts
  • Hans Wildiers
  • Chantal Van Ongeval
  • Erik van Limbergen
  • Vessela Kristensen
  • Grethe Grenaker Alnæs
  • Silje Nord
  • Anne-Lise Borresen-Dale
  • Heli Nevanlinna
  • Taru A. Muranen
  • Kristiina Aittomäki
  • Carl Blomqvist
  • Jenny Chang-Claude
  • Anja Rudolph
  • Petra Seibold
  • Dieter Flesch-Janys
  • Peter A. Fasching
  • Lothar Haeberle
  • Arif B. Ekici
  • Matthias W. Beckmann
  • Barbara Burwinkel
  • Frederik Marme
  • Andreas Schneeweiss
  • Christof Sohn
  • Amy Trentham-Dietz
  • Polly Newcomb
  • Linda Titus
  • Kathleen M. Egan
  • David J. Hunter
  • Sara Lindstrom
  • Rulla M. Tamimi
  • Peter Kraft
  • Nazneen Rahman
  • Clare Turnbull
  • Anthony Renwick
  • Sheila Seal
  • Jingmei Li
  • Jianjun Liu
  • Keith Humphreys
  • Javier Benitez
  • M. Pilar Zamora
  • Jose Ignacio Arias Perez
  • Primitiva Menéndez
  • Anna Jakubowska
  • Jan Lubinski
  • Katarzyna Jaworska-Bieniek
  • Katarzyna Durda
  • Natalia V. Bogdanova
  • Natalia N. Antonenkova
  • Thilo Dörk
  • Hoda Anton-Culver
  • Susan L. Neuhausen
  • Argyrios Ziogas
  • Leslie Bernstein
  • Peter Devilee
  • Robert A. E. M. Tollenaar
  • Caroline Seynaeve
  • Christi J. van Asperen
  • Angela Cox
  • Simon S. Cross
  • Malcolm W. R. Reed
  • Elza Khusnutdinova
  • Marina Bermisheva
  • Darya Prokofyeva
  • Zalina Takhirova
  • Alfons Meindl
  • Rita K. Schmutzler
  • Christian Sutter
  • Rongxi Yang
  • Peter Schürmann
  • Michael Bremer
  • Hans Christiansen
  • Tjoung-Won Park-Simon
  • Peter Hillemanns
  • Pascal Guénel
  • Thérèse Truong
  • Florence Menegaux
  • Marie Sanchez
  • Paolo Radice
  • Paolo Peterlongo
  • Siranoush Manoukian
  • Valeria Pensotti
  • John L. Hopper
  • Helen Tsimiklis
  • Carmel Apicella
  • Melissa C. Southey
  • Hiltrud Brauch
  • Thomas Brüning
  • Yon-Dschun Ko
  • Alice J. Sigurdson
  • Michele M. Doody
  • Ute Hamann
  • Diana Torres
  • Hans-Ulrich Ulmer
  • Asta Försti
  • Elinor J. Sawyer
  • Ian Tomlinson
  • Michael J. Kerin
  • Nicola Miller
  • Irene L. Andrulis
  • Julia A. Knight
  • Gord Glendon
  • Anna Marie Mulligan
  • Georgia Chenevix-Trench
  • Rosemary Balleine
  • Graham G. Giles
  • Roger L. Milne
  • Catriona McLean
  • Annika Lindblom
  • Sara Margolin
  • Christopher A. Haiman
  • Brian E. Henderson
  • Fredrick Schumacher
  • Loic Le Marchand
  • Ursula Eilber
  • Shan Wang-Gohrke
  • Maartje J. Hooning
  • Antoinette Hollestelle
  • Ans M. W. van den Ouweland
  • Linetta B. Koppert
  • Jane Carpenter
  • Christine Clarke
  • Rodney Scott
  • Arto Mannermaa
  • Vesa Kataja
  • Veli-Matti Kosma
  • Jaana M. Hartikainen
  • Hermann Brenner
  • Volker Arndt
  • Christa Stegmaier
  • Aida Karina Dieffenbach
  • Robert Winqvist
  • Katri Pylkäs
  • Arja Jukkola-Vuorinen
  • Mervi Grip
  • Kenneth Offit
  • Joseph Vijai
  • Mark Robson
  • Rohini Rau-Murthy
  • Miriam Dwek
  • Ruth Swann
  • Katherine Annie Perkins
  • Mark S. Goldberg
  • France Labrèche
  • Martine Dumont
  • Diana M. Eccles
  • William J. Tapper
  • Sajjad Rafiq
  • Esther M. John
  • Alice S. Whittemore
  • Susan Slager
  • Drakoulis Yannoukakos
  • Amanda E. Toland
  • Song Yao
  • Wei Zheng
  • Sandra L. Halverson
  • Anna González-Neira
  • Guillermo Pita
  • M. Rosario Alonso
  • Nuria Álvarez
  • Daniel Herrero
  • Daniel C. Tessier
  • Daniel Vincent
  • Francois Bacot
  • Craig Luccarini
  • Caroline Baynes
  • Shahana Ahmed
  • Mel Maranian
  • Catherine S. Healey
  • Jacques Simard
  • Per Hall
  • Douglas F. Easton
  • Montserrat Garcia-Closas
چکیده

BACKGROUND Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. METHODS We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. RESULTS There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. CONCLUSIONS The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of Obesity Related Genetic Variants (FTO and MC4R) with Breast Cancer Risk:a population-based case-control study in Iran

Background: The heterogeneous breast cancer is the most common cause of cancer-related mortality. Obesity defined by BMI is known as a major risk factor for breast cancer. Objective: The purpose of this study was to explore the role of obesity related-polymorphisms rs9939609 FTO and rs17782313 MC4R in breast cancer development. Materials and Methods: We obtained matched peripheral blood, serum ...

متن کامل

Pharmacogenomic Profiling of the PI3K/PTEN Pathway in Sporadic Breast Cancer

Background: Pharmacogenomics is the study of genetic variations among individuals to predict the probability that a patient will respond to single or multidrug chemotherapy. Breast cancer is one of the most common cancers among women worldwide. Treatment of breast cancer by application of biological rationales gives us the ability to match the correct pharmacology to individual tumour genetic p...

متن کامل

بررسی عوامل خطر ابتلا به سرطان پستان

Introduction: Breast cancer is one the most common form of cancer in women all over the world. The incidence of women breast cancer is increasing in Iran. There are many risk factors involved in the risk of breast cancer so that these risk factors have been determined based on genetic, environmental, and geographical conditions in various studies. The current study aimed to evaluate the risk fa...

متن کامل

Mammographic Breast Density and Common Genetic Variants in Breast Cancer Risk Prediction

INTRODUCTION Known prediction models for breast cancer can potentially by improved by the addition of mammographic density and common genetic variants identified in genome-wide associations studies known to be associated with risk of the disease. We evaluated the benefit of including mammographic density and the cumulative effect of genetic variants in breast cancer risk prediction among women ...

متن کامل

Structural effect of P278A mutation conferring breast cancer susceptibility in the p53 DNA-binding core domain

One of the common malignancies faced by women around the world is breast cancer. Risk factors for breast cancer include both genetic and non-genetic. Variants in some of the candidate genes are a common risk factor in breast cancer. These genetic variants associated with breast cancer can be classified as high, moderate or low based on relative risk [1]. Among them, genes that predispose to hig...

متن کامل

Genetic modifiers of cancer risk for BRCA1 and BRCA2 mutation carriers.

Germline mutations in BRCA1 and BRCA2 confer high risks of female breast and ovarian cancer. However, there is strong evidence that these risks are modified by other factors, including familial or genetic factors. Genome-wide association studies have identified several breast cancer genetic susceptibility variants in the general population that are also associated with breast cancer risk for mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2015